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Fig. 1. The interface of HetVis for analyzing the heterogeneity issues among Federated Learning cooperation from the perspective
of a participating client. (a) The module of federated learning process observation consists of an information panel introducing the
federated model and the local client, the parameter projection view depicting the evolution of the disagreements between the local
client and the integrated model, and a performance monitor view recording model performance and users’ annotations. (b) The module
of model output comparison identifies and clusters inconsistent records between the output of the federated learning model and the
stand-alone training model. (c) The module of heterogeneity examination allows users to analyze an inconsistent cluster by observing
the distribution and inspecting instances. Findings can be annotated to the cluster in the control panel.

Abstract— Horizontal federated learning (HFL) enables distributed clients to train a shared model and keep their data privacy. In
training high-quality HFL models, the data heterogeneity among clients is one of the major concerns. However, due to the security
issue and the complexity of deep learning models, it is challenging to investigate data heterogeneity across different clients. To
address this issue, based on a requirement analysis we developed a visual analytics tool, HetVis, for participating clients to explore
data heterogeneity. We identify data heterogeneity through comparing prediction behaviors of the global federated model and the
stand-alone model trained with local data. Then, a context-aware clustering of the inconsistent records is done, to provide a summary
of data heterogeneity. Combining with the proposed comparison techniques, we develop a novel set of visualizations to identify
heterogeneity issues in HFL. We designed three case studies to introduce how HetVis can assist client analysts in understanding
different types of heterogeneity issues. Expert reviews and a comparative study demonstrate the effectiveness of HetVis.

Index Terms—Federated learning; data heterogeneity; cluster analysis, visual analysis.
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to benefit from data integration, e.g., to train high-quality models,
while also respecting privacy concerns. To satisfy this requirement,
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federated learning [40] (FL) keeps data locally in clients when training a
shared model. Only encrypted parameters are shared with other clients.
Especially, horizontal federated learning (HFL), which integrates data
from the same feature space but distributed at different clients, has been
widely used in privacy-aware applications, like healthcare and mobile
service [18, 36].

A key and common challenge of HFL is the heterogeneity of data
distribution. The efficiency of current HFL techniques depends on the
assumption that data distribution in different clients is independent and
identically distributed (IID). However, the IID assumption usually does
not hold. Non-IID data is widely used in model training to increase
sample size and leads to difficulties in convergence [20, 39]. Figuring
out their existence is necessary for applications of HFL. Specifically,
data heterogeneity can exert both negative impacts and positive impacts
on the accuracy of trained models. Statistical heterogeneity, meaning
that distributed data cover the same classes but different proportions,
can be positive. For example, one client has insufficient samples in
one class while the other clients have adequate samples in the same
class. In this case, multiple clients are facilitated in the collaboration.
Label heterogeneity means that similar instances are labeled differently
in different clients. The divergence in label settings usually affects
model training negatively. Therefore, it is critical for participating
clients to diagnose the data heterogeneity in the training process and
fine-tune the model and data [41]. We identify two analysis goals in
heterogeneity: (1) detecting the existence of data heterogeneity and
(2) knowing the impacts of data heterogeneity. For example, hospitals
collect patient data for disease analysis, and search engines record user
logs for advertising recommendations.

However, analyzing the data heterogeneity in HFL is highly
challenging. Traditional approaches identify heterogeneity through
comparing data [28]. Due to the privacy issue, a client is prevented
from accessing data owned by other clients directly. Direct comparison
between local data and global data is infeasible. The HFL model is
the only intelligence fed back to the client by the cooperation. As it is
trained with the global model with a HFL framework, the global data
is learned by the HFL model. There are two challenges in analyzing
data heterogeneity based on the HFL model. First, although a lot of
works have been dedicated to understanding deep learning models
by input and output data, the inverse workflow of understanding the
unavailable training data by the model is still an open problem. Second,
the behavior of the HFL model depends on multiple factors, including
the data and model architectures. How to distinguish the effect of
training data from other factors is also challenging. An encompassing
analysis workflow is still missing for HFL analysis.

To fill the above research gap, we present a visual analytics tool for
client analysts to detect and understand data heterogeneity in HFL under
the privacy limitation. We leverage a contrastive analysis approach
to locate heterogeneous records and examine them. To overcome the
privacy limitation, we propose to train a stand-alone model based on
local data and compare it with the HFL model. Because data is learned
by a model in the training process, the comparison between the two
models discloses the heterogeneity between the local data and global
data. We further propose a cluster analysis method based on rank-based
distance measurement to distinguish the impacts from different group
of heterogeneous records. We developed an interactive interface, called
HetVis, in conjunction with our analysis approach to monitor, explore,
and understand the models and instances. A comparative study is
implemented to show that the proposed cluster analysis method is more
helpful for analyzing heterogeneity than hierarchical clustering. Three
case studies were designed to demonstrate the effectiveness of our
interface when analyzing different kinds of data heterogeneity. We also
collected informative reviews from three experts in FL, confirming the
effectiveness of HetVis.

In summary, the contributions of this work are:

• A novel visual analysis workflow that assists to analyze the
heterogeneity in HFL models.

• A context-aware clustering approach that hierarchically generates
clusters of data which are inconsistent with others.

• A visual system that integrates a suite of novel designs.

2 RELATED WORK

In this section, related works are summarized from three aspects:
heterogeneity in distributed learning, visualization for model diagnosis,
and visualization for model comparison.

2.1 Heterogeneity in Distributed Learning
The problem of data heterogeneity has put forward challenges for
integrating distributed data into joint or public knowledge. Related
scenarios mainly include distributed learning and statistical analysis.

In the first scenario, heterogeneity issues, including state
heterogeneity [38], hardware heterogeneity [37], statistical
heterogeneity, and label heterogeneity, lead to convergence problems
of the global model [20]. In this paper, we focus on identifying
data heterogeneity issues (i.e., statistical heterogeneity and label
heterogeneity). Related studies leverage automatic solutions to
improve model robustness. FedProx [21] modifies the weight updating
algorithm to limit the impact of local updates on the global model. This
approach, however, can hardly address the label heterogeneity problem,
because the trained model can be meaningless if the definition of
labels varies for different clients. Another solution is to train separated
models instead of a global one. Separated models can learn from each
other based on state-of-the-art frameworks, such as meta-learning [11]
and multi-task learning [30]. However, these automatic solutions lack
the ability to analyze heterogeneity and therefore miss the chance to
optimize models by means, like managing distributed data.

In the second scenario, meta-analysis [28] is proposed as a
methodology to discriminate, combine and summarize multiple
statistical analysis results. In the discrimination stage, statistical tests
are leveraged to assess the significance of heterogeneity [8, 16]. If the
heterogeneity is significant, the statistical analysis results cannot be
integrated directly [5]. A feasible solution is to locate and exclude the
variables or moderators that result in the heterogeneity [28]. However,
these approaches are not practical for FL due to the privacy limitation.

In this paper, we leverage limited available information (the
parameters and the output of HFL models) to facilitate heterogeneity
detection and examination, so that users can better understand the
significance of heterogeneity issues.

2.2 Visualization for Model Diagnosis
Approaches for model diagnosis mainly fall into three categories:
monitoring the model performance fluctuation, inspecting model
configuration, and leveraging instance-level analysis.

Visualization techniques aim to provide an overview of the model
evolution. In existing applications, the performance of the model (e.g.,
loss) is frequently recorded and represented as time series [3, 10]. We
also show the performance dynamics in our system to assist users in
judging the convergence and performance of the federated model.

To reason why the performance fluctuates, users need to further
inspect the model configuration. DeepEyes [25] allows users to check
details of detected stable layers in deep neural networks through
three linked views, which depict activations, instances, and filters to
judge if a layer is oversized or unnecessary. GANViz [32] compares
image features from the dimension of time. The comparison results
reflect the impact of a feature during the model training process.
DGMTracker [22] applies a credit assignment algorithm to locate
the neurons that contribute to the failure [22]. However, various
models with distinctive structures can be trained based on the federated
architecture. We focus on the HFL process, namely the exchange of
parameters between the local client and the server, from which the
disagreements between the local client and the others can be studied.

Testing output requires a lower learning cost than model
interpretation, which is more acceptable for domain experts. To
diagnose and improve the model, failed cases should be emphasized.
The What-If-Tool [35] allows users to customize the input of models
and learn the mechanics of models by comparing related outputs.
RetainVis [15] allows users to modify the input of an RNN model
and figure out why a record is classified incorrectly. Krause et



al. [13] provide instance-level explanations to verify the effectiveness of
features based on a single instance. However, none of the above studies
consider data heterogeneity due to the difference between application
scenarios.

2.3 Visualization for Model Comparison
Existing studies on model comparison mostly aim at selecting the best
model, which requires to compare model performance. Instance-level
analysis can be leveraged to facilitate the understanding of model
behaviors. DeepCompare [24] groups instances by the combination of
classification results of a Convolutional Neural Network (CNN) and
a Long Short-Term Memory (LSTM) model. The group information
indicates where the two models disagree with each other. Users can
start exploration from the instances that are misclassified by one or two
models. The neuron activation pattern of the user-selected instance can
be compared through a heatmap. However, models can achieve the
same label with a different confidence [27]. Manifold [43] employs
scatterplots with color encodings to show the overview of instance-level
details, which are the confidence of the model pair and the ground-truth
label.

Model comparison can also offer an in-depth understanding of the
data. On the one hand, the output of the model reflects the underlying
characteristics of the data. Employing multiple models allows users
to learn data from multiple perspectives. Alexander and Gleicher [2]
compare the results of two topic models to illustrate the consistency
of documents. They introduce two visual encodings to represent the
outputs of the two models, respectively. PK-clustering [26] compares
the results of multiple clustering algorithms to reduce uncertainty in
prior knowledge. The trend patterns can highlight inconsistencies.
ConceptExplorer [33] compares the performance fluctuation of the
online learning models trained with different time-series datasets. Users
can judge if those data have experienced consistent evolution based on
the proposed drift-level index. Similarly, we attempt to comprehend
the heterogeneity between the local data and the data distributed on
the other clients by comparing the stand-alone training model with the
HFL model.

3 APPROACH DESIGNS

In this section, we first introduce the background of horizontal federated
learning and describe the design requirements.

3.1 Horizontal Federated Learning Architecture
The typical architecture of horizontal federated learning (HFL) consists
of a set of clients who own local data and a server which hosts the
exchange of parameters among clients. At the beginning of the training,
the model settings are unified for initialization. After that, cooperated
training performs iteratively. Each communication round includes four
steps. First, each client receives centralized parameters from the server.
Second, each client updates the parameter by training and testing with
local data. Then, each local update is submitted to the server. For
privacy concerns, parameters can be encrypted [42] or processed by
differential privacy [34]. Third, the server integrates the parameters
from the clients by aggregation algorithms. (We employ FedAvg [23]
as default aggregation algorithms in this work.) Finally, the server
sends the integrated results back, based on which each client updates
the parameter of their own model and gets ready for the next round.
In conclusion, each client can only access the parameters of the HFL
model in the entire learning process.

3.2 Requirements Analysis
Because clients cannot exchange the raw data, the primary issue
of designing a visual diagnosis tool for data heterogeneity is that a
direct comparison among data from different clients is infeasible. We
interviewed two FL experts (E1 and E2) to define requirements. Both
of them are senior machine learning researchers who have studied
FL for more than 3 years and published related papers. They said
that they have no effective solutions to deal with heterogeneity issues
caused by heterogeneous data. Although a visualization system [19]
is proposed to inspect the training process of the HFL, a tool for

heterogeneity exploration is still missing. Without the understanding
of data heterogeneity, it is challenging to remove heterogeneity issues
thoroughly. Therefore, the experts agree that an interactive visualization
tool to examine the data heterogeneity is critical for real applications.

To identify the major requirements, questions are asked to two FL
experts: Without the prior knowledge of data from other clients, how
can you be aware of the existence of data heterogeneity? What kind
of information is helpful in identifying and understanding the data
heterogeneity?

Based on the interviews and literature review, we identify three
requirements.

R1. Knowing the existence of data heterogeneity. Both
experts pointed out that it is critical to know the occurrence of data
heterogeneity during the model building, so that the investigation of
data heterogeneity can be performed at appropriate rounds.

• R1.1 Tracking the dynamic performance of the federated model.
Data heterogeneity will hinder the convergence of the federated
model and harm its performance. The fluctuation of performance
metrics, such as loss, is a good indicator of the training process [3,
10]. Tracking them helps to know the dynamics of the training
process and further locate the rounds when heterogeneity issues
occur and affect the federated model.

• R1.2 Inspecting the parameter conflicts between the client model
and federated model. The federated model iteratively integrates
model parameters from client models. The data heterogeneity will
lead to differences in model parameters submitted by different
clients. Therefore, the significant parameter conflicts are also a
signal of possible data heterogeneity. Due to the number of model
parameters, users need an efficient analysis manner to inspect the
differences.

R2. Comparing data in terms of model behaviors. Both experts
agreed that the most critical barrier before investigating the data
heterogeneity is the data isolation in FL. The only feedback information
from other clients is the federated model. Instead of comparing data
directly, E1 suggested that we can compare prediction behaviors of
the models trained with the data. Because a model has learned from
training data in the training process, based on which the model can
make predictions for other inputs.

• R2.1 Training a local model with the local data. The HFL model
learns from global data during the training process. However, the
client model learns more than the local data because the client
model is updated with centralized parameters (see Sec 3.1). We
need a local model whose training process employs local data only.
Besides, to exclude impacts of model designs, the local model
should be trained in the same architecture (e.g., CNN models in
the same network structure) as the HFL model.

• R2.2 Testing model output with various inputs. Comparing model
output is a common practice to learn the differences in prediction
behaviors of two models [43]. For a comprehensive comparison,
we should provide inputs that can cover the corresponding data
space.

R3. Supporting visual examination of heterogeneity issues.
Visual analysis approaches can facilitate users in understanding
heterogeneity issues and reasoning their impacts.

• R3.1 Identify heterogeneity issues based on inconsistent outputs.
E2 said that clustering records with inconsistent model outputs
can facilitate in identification of heterogeneity issues. According
to the theories in meta-analysis [28], researchers need to deal with
heterogeneity issues based on their significance. After clustering
records, the significance of heterogeneity can be observed from
the size of each cluster. If the ground-truth label is available, we
can further calculate the prediction accuracy of the HFL model
for the records in each cluster and assist client analysts to judge
whether the impact of the corresponding heterogeneity issue is
positive or negative.
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Fig. 2. The three-stage workflow for analyzing heterogeneity issues in a federated cooperation from the perspective of a client.

• R3.2: Reason the impact of heterogeneity issues by individual
records. Overview of a group can facilitate analysts to come up
with hypotheses. A hypothesis could be “two models strongly
disagree in the classification of records with certain features.”
Analysts can realize significant data heterogeneity and infer that
the federated model may yield wrong judgments for records with
these features, according to the verified hypothesis. To make
verification, the experts would like an instance-level visualization
to access the details, such as the images and labels.

• R3.3 Tracking the identified issues during the training process.
During the training process, the classification results for certain
records may update. An intermediate result of a certain
communication round may be randomly influenced (e.g., the
training data included outliers accidentally), even after the model
has converged. To draw a firm conclusion, analysts need to collect
suspected issues and track them in the following communication
rounds. Besides, analysts can observe what problems HFL faces
and whether it can solve them by tracking the training process. It
is significant to evaluate the effectiveness and robustness of the
HFL model.

4 WORKFLOW

To support users, i.e., client analysts, analyzing heterogeneity issues, we
propose a three-stage workflow (see Figure 2): 1) monitoring the HFL
process, 2) comparing model output, and 3) examining heterogeneity.

4.1 Monitoring the Learning Process
In the first stage, users need to learn the model configurations of
the global HFL model and observe the training process. Model
configurations include the choice of aggregation algorithms, the number
of clients, and the description of the local data. The training process
of HFL can be described by performance fluctuation (R1.1) and the
exchanges of model parameters between the local client and the
server (R1.2, Figure 2(b)). Dramatic performance fluctuations or
continuous conflicts of model parameters may indicate unsatisfying
global data, which can motivate in-depth analysis for heterogeneity
issues. The following analysis needs to be implemented based on a
static model. To specify the intermediate HFL model, users need to
select a communication round according to the observation results of
the training process (Figure 2(c)).

4.2 Comparing Model Output
In the second stage, users need to indirectly compare global data and the
local data by comparing prediction behaviors of the two models trained
respectively. We employ local data to train a stand-along training

model in the same model architecture with the global HFL model
(R2.1). The stand-along training model is used to compare with the HFL
model, which is trained with global data. To collect various outputs, we
provide three sets of data records as input (R2.2, Figure 2(d)), which
are local data and two automatically generated datasets (please refer to
Section 5.1 for details). The records with inconsistent outputs (records
classified as different labels by the two models), or we say in the
following, inconsistent records, are then identified (Figure 2(e)). Users
can leverage a cluster analysis method (R3.1, Figure 2(f), Section 5.2)
to generate inconsistency clusters from inconsistent records.

4.3 Examining Heterogeneity
In the third stage, users examine an inconsistency cluster to study
the corresponding heterogeneity issue and understand the impacts of
the heterogeneity issue. As shown in Figure 2(g), users can check
data space characteristics of the records in the selected inconsistency
cluster. Related findings inspire users to come up with hypotheses
on suspicious heterogeneity. To make tentative verification, users can
select certain records in the inconsistency cluster and browse record
details (Figure 2(h)). Records with ground-truth labels can facilitate
users to judge whether the heterogeneity issue leads to a higher accuracy
than the stand-alone training model (R3.2).

As shown in Figure 2(i), users can annotate the records with
suspicious heterogeneity issues and track these records in the following
training process (R3.3). If the negative impacts of these records is
weakened or even disappears, users can consider that the HFL models
can overcome such heterogeneity. If not, this indicates users should pay
attention to possible heterogeneity issues, and reassess the cooperation
of FL.

5 MODELS

In this section, we introduce the two models employed in our system.

5.1 Input Generation from the Data Space
We generate a representative input that distributes all over the data
space for a comprehensive test of output comparison. Because the
original data space is often of too high dimensionality to perform
an efficient sampling, we assume that the data is distributed in a
low-dimensional subspace. Therefore, we perform PCA on the data
to get the low-dimensional space. After that, we employ stratified
sampling, which is more efficient and effective than random sampling,
to sample inputs in the low-dimensional space.

The low-dimensional samples are then projected back to
high-dimensional space to satisfy the input format. To avoid illegal
input, range interception is implemented according to the definition



of each dimension. For instance, in a handwritten digit dataset, the
grayscale of a pixel is regarded as a dimension whose threshold is from
0 to 255. If a dimension is restored as 260, we correct it as 255 for
legality and validity.

5.2 Context-aware Clustering Approach
It is time-consuming to browse each inconsistent record from the
high-dimensional space to compile a summary on heterogeneity issues.
We, therefore, leverage a cluster analysis to organize inconsistent
records and analyze heterogeneity. Observing clustering results
with different settings of the cluster number can facilitate users to
generalize heterogeneity issues from different levels. To support
flexible adjustment of the cluster number, we employ hierarchical
clustering to group inconsistent records.

However, inconsistent clusters may be mixed up with consistent
records, which hardly contribute to extraction of heterogeneity issues.
To exclude consistent records from inconsistency clusters, we have to
consider the context of consistent records surrounding inconsistent
records when constructing hierarchical clustering. Therefore, we
change the distance measurement in the hierarchical clustering from
Euclidean measurement to a rank-based measurement. We denote
the set of all records as {si|i = 1, . . . ,n}. Among them, there
exist m inconsistent records, which are {si|i = 1, . . . ,m} (m ≤ n).
The Euclidean distance from s j to sk is represented by dE( j,k).
The rank-based measure calculates the distance between a pair of
inconsistent records s j and sk (1 ≤ j ≤ m, 1 ≤ k ≤ m, and j ̸= k) as:

dR( j,k) = r j(k)× rk( j), (1)

where r j(k) is the ranking of dE( j,k) in {dE( j, i)|i= 1, . . . ,n}. Namely,
sk is the r j(k)-th closest record to s j among all records, including
consistent records. Based on the rank-based measurement, inconsistent
records with less surrounding consistent records will be preferentially
aggregated together, even if the inconsistent records are far apart.

6 VISUAL ANALYSIS INTERFACE

Corresponding to the workflow, the interface of HetVis consists of three
modules, which are learning process monitor (Figure 1(a)), output
comparison (Figure 1(b)), and heterogeneity examination (Figure 1
(c)).

6.1 Learning Process Monitor
The module for monitoring the HFL process (Figure 1(a)) consists
of an information panel, a parameter projection view (Figure 1(a1)),
and a performance view (Figure 1(a2)). The information panel, which
introduces the configuration information of the HFL model and the
description of the analyzed client, are listed at the top of the module.
The descriptions will be updated with the progress of the model training
(i.e., a new communication round is finished).

Parameter projection view: As shown in Figure 1(a1), the
parameter projection view summarizes exchanges of model parameters
between the local client and the server. Because model parameters
updated in a single communication round could be affected by accident
outliers, it is necessary to provide an overview of parameter updates
during the entire training process. In each communication round,
model parameters can be considered as a high-dimensional vector. To
observe parameters from a low-dimensional perspective, we generate
a 2D projection for the parameter vectors of the HFL model in all
communication rounds. To reflect parameter exchanges, parameters
submitted by the local client are transformed into vectors of the same
size and projected onto the same plane. The employed projection
approach is accelerated by a probabilistic algorithm [7]. Considering
that different parameters contribute in different ways, we allow users
to specify a group of parameters and check them individually. For
example, users can specify a layer in the neural network and check the
projection of the model parameters on this layer.

In the parameter projection view, the points that project model
parameters of the HFL model in each communication round are
connected by a gray polyline. The grayscale encodes the time sequence.

A brown arrow is drawn from the point projecting federated parameters
in round i−1 to the local client parameters in round i. The federated
parameters in round i are different from the local parameters because
the federated parameters have integrated parameters from other clients.
The size of the angle between the arrow and the polyline implies the
disagreement of parameters at round i. The cosine of each angle in the
high-dimensional space is calculated and encoded by the darkness of the
corresponding arrow to avoid misunderstanding caused by projection
distortion. Disagreements and compromises between the local client
and the server can be observed by comparing historical parameter
updates with the actual parameter evolution of the HFL model.

Performance view: At the bottom of the interface, the performance
view (see Figure 1(a2)) monitors the dynamics of the performance
testified by the local data. Performance indicators consist of the training
loss, the accuracy for the test set, and the total accuracy for local
data. Users are allowed to switch indicators to apply a comprehensive
evaluation.

6.2 Output Comparison
The second module (Figure 1(b)) consists of an output comparison view
and a summary of inconsistency clusters.

The result of output comparison is displayed in the output
comparison view (Figure 1(b1)). To contrast inconsistent records
(in brown) with others (in gray), all records are projected through
ccPCA. As mentioned in Section 4.2, the projection could hardly split
all inconsistent records from the rest simultaneously. Users are allowed
to check the overlaps by switching the top layer between inconsistency
and consistency.

We list inconsistency clusters in the order of size (Figure 1(b2))
to motivate heterogeneity examination. Each inconsistency cluster
is represented by a glyph. In each glyph, the convex hull of the
inconsistent records is superimposed on a density heatmap of all records
in the output comparison view. The cluster size and the accuracy of the
HFL model on the cluster are listed below the corresponding glyph. A
cluster with an extremely low accuracy may suggest a significant impact
from the corresponding heterogeneity issue. Clusters with insufficient
records can be regarded as outliers.

6.3 Heterogeneity Examination
Users examine an inconsistency cluster in the third module of the
interface (Figure 1(c)), which includes two views for distribution
exploration, an instance verification panel (Figure 1(c4)), and an
annotations panel (Figure 1(c5)). The distribution exploration views
are introduced as follows.

Dimension exploration view: Users need to extract heterogeneity
issues by identifying commons shared by inconsistent records but
not shared by others. However, it is exhausting to inspect each
dimension, considering the records are high dimensional. To improve
analysis efficiency, we provide users with two entrances for dimension
selections. The first entrance navigates users from the perspective of
data space. This entrance shows how important each dimension is
to distinguish the selected cluster from others based on the first two
cPCs of ccPCA [4]. The second entrance navigates users from the
perspective of model behaviors, which only works for HFL based on
CNN models. Gradient class activation maps (Grad-CAM) [29] can
measure how important each dimension is for a CNN model to classify
a record. The average Grad-CAM of all records in the cluster can
identify significant dimensions to a model. To analyze inconsistent
model behaviors, we generate a pair of average Grad-CAMs for
the stand-alone training model and the HFL model, respectively.
Comparing the two average Grad-CAMs can help users identify the
differences in model judgments. However, such differences in model
judgment can hardly be demonstrated by Grad-CAMs in rare cases
(e.g., models with cascading randomization) [1, 12]. It is necessary to
leverage both of the entrances.

We employ a pair of pixel maps to represent the user-specified
dimension entrance. Note that both entrances generate a pair of
importance values. When the entrance based on ccPCA is activated,
two pixel maps represent the quantified importance of each dimension



measured by the first two cPCs, respectively. When the entrance based
on Grad-CAM is used, the two pixel maps represent the quantified
importance evaluated by the two models, respectively. In a pixel map,
each pixel corresponds to a dimension. If records are in the form of
pictures, the relative position of a pixel is consistent with its position
in pictures. If the pictures have more than one channel (e.g., RGB
channels), users can select a channel and check a channel at a time.
The color of a pixel encodes the dimension importance.

Users can hover on a pixel to find the pixel corresponding to the same
dimension in the other pixel map. Users can also click a pixel and check
the corresponding dimension distribution of all records or the records
in the cluster (see Figure 1(c2)). Percentage distributions of overall
records, inconsistent records, and consistent records are displayed
respectively. To adapt to different distribution patterns, the scale on the
y-axis (percentage) can be switched from linear to logarithmic.

Label exploration view: A matrix design is leveraged to compare
the ground-truth labels with the output of the HFL model (see
Figure 1(c3)). Each cell of the matrix corresponds to a pair of labels (see
Figure 3(a)). The horizontal position is specified by the ground-truth
label, and the vertical position is specified by the output from the
HFL model. The records in the non-diagonal cells indicate that the
HFL model generates incorrect output. If extra labels (i.e., the labels
not included in the ground-truth labels) exist in the output of the
HFL model, there will be extra rows listed after the labels included
in the ground-truth label. Users can scroll down to check the cells
corresponding to extra labels.
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The records, which meet the pair of the ground-truth label and
the output of the HFL model, are projected in the corresponding cell
as a scatter plot by ccPCA [4] (see Figure 3(b)). For each cell, we
count the inconsistent records in the selected cluster and the local data,
respectively. The numbers are displayed in the upper-left corner (see
Figure 1(c3)). The inconsistent records and the consistent records are
with the same color encoding as those in the output comparison view.
Also, the convex hull of the selected cluster is drawn in each cell.

A grid-based heatmap is shown as a background in each cell
(see Figure 3(b)). The background color encodes the density of the
corresponding ground-truth label. Through comparing the background
with scatters or convex hulls, users can come up with conjectures, like
“there exist label heterogeneity.” Therefore, the cells in the same column
are with the same background. The grid size can be adjusted to observe
from different levels of granularity. Users are also allowed to hide the
scatters and focus on the label distribution in cells. The contents in all
cells can be zoomed in together.

6.4 User Interactions
Our system supports the following interactions.

Check an intermediate result of the HFL model. In the
performance view, users can drag a handle to select a communication

round and analyze the HFL model updated at this round. If the round
is included in the user-specified range for the updates projection view,
a circle appears in the projection view to highlight the corresponding
round.

Request for recommended parameters. In consideration of
efficiency, the initial contrastive parameters for ccPCA and the number
of inconsistency clusters are default as 10 and 8. To seek better
effectiveness, users can request recommended parameters by clicking
the button on the right of the input box. The recommended contrastive
parameter for ccPCA is provided by the original approach [4]. The
cluster number is recommended through the maximum difference [31].

Examine an inconsistency cluster. After browsing the list of
inconsistency clusters, users can click on a glyph in the column of
the model output comparison to examine it in the third module. The
selected glyph will be highlighted by a thick stroke.

Apply instance verification. Users can select a record in the
label exploration view by clicking. The record description, including
dimension details, the ground-truth label, and the output of the
two models, can be found in the instance verification view (see
Figure 1(c4)).

Manage records with suspicious heterogeneity issues. Users are
allowed to select all records in the currently analyzed cluster as the
object in the control panel (see Figure 1(c5)). Note that local data
records are selected by the convex hull if the data records in the cluster
are sampled data. If necessary, the intersection set or the joint set of
the current cluster and annotated records can be selected.

Leverage the analysis provenance. In the column of heterogeneity
examination, users can annotate their findings and record the analyzed
inconsistency cluster to the analysis provenance in the control panel
(see Figure 1(c5)). Each annotation generates a message icon in the
performance monitor view. Users can click a message icon to review
the details of previous annotations. Also, the records in the annotated
set will be highlighted in both the model output overview and the
label exploration view. If the annotated cluster has an overlap with an
inconsistency cluster, the cluster glyph will be highlighted, and the size
of the overlap will be shown below the glyph. Each annotation can be
deleted by right-clicking on the icon.

7 CASE STUDIES

7.1 Handwritten Digits Recognition
The MNIST dataset [17] is employed in the first case to train a
Multilayer Perceptron (MLP) for classification. The original dataset
was distributed to 10 clients. Each client has 6,000 records of pictures,
with two consecutive digital labels, e.g., digit-1 and digit-2. 10%
records are employed in the test set. The analyzed client owns records
with labels consisting of digit-0 and digit-1.

As shown in Figure 1(a2), the loss became stable at the 40th round
(R1.1). We check the convergence process by selecting this round. We
employed local data as input to compare outputs from the stand-alone
model and the HFL model (R2.2). 300 inconsistent records were
identified from the comparison. As shown in Figure 4, the numbers
of inconsistent records in the label exploration matrix reflect that most
inconsistent records locate in non-diagonal cells, where ground-truth
labels are different from the output of the HFL model. The HFL model
has a lower accuracy than the stand-alone training model. The HFL
model classified partial records as other labels.

We generated a ccPCA projection based on the recommended
contrastive parameter to have an overview of all records. The projection
result indicated that inconsistent records are not gathered closely and
heavily overlapped with consistent ones. To distinguish them, we
captured the features of inconsistent records by inspecting their clusters
(R3.1). We paid attention to the four clusters with the most records. The
second, the third and the fourth clusters correspond to a rare handwritten
style, respectively (see Figure 5(a)).

We noticed that records with various handwritten styles are mixed
up in the first cluster. To categorize styles and refine heterogeneity
issues, we further split the first cluster up by setting a larger cluster
number (see Figure 5(b)). One of them, consisting of 47 records, can
not be further split up with a minor increase in the cluster number.
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The label exploration view indicates that all of the records are with a
ground-truth label of digit-1. To explore this cluster, we checked the
cluster distributions of several dimensions with a high weight assigned
by ccPCA. As shown in Figure 6, certain dimensions are distributed in
corners of the pictures. Verified by several records, we found that they
were digit-1s in typography font (R3.2). The HFL model is inclined to
misidentify this rare handwritten style as other digit labels, like digit-7.

We annotated the 47 records in the cluster and inspected these
records in the final round (i.e., the 200th round) (R3.3). Partial records
of digit-1 with an extra dot or giant digit-0 are corrected, while the
rest are not (see Figure 1(b2) and (c4) to inspect the cluster of digit-1s
in typography font). Although the number of inconsistent records
decreases to 208, the accuracy of the HFL model is still not satisfying
as the stand-lone training model. Therefore, we should suggest other
clients collect more pictures of digit-0 and digit-1 to optimize the HFL
model.

7.2 Face Mask Recognition
In the second case, we trained a federated CNN model to recognize if
the person in a color picture wears a mask. Two clients participated
in the FL cooperation. Our client used the face mask image dataset
provided by Jangra [9]. The other client employed the face mask
detection dataset provided by Gurav [6]. All records are unified to RGB
images in the size of 28*28 pixels. The local training set has 6,000
records and the local test set has 1,792 records.

We first observed the learning process from the parameter projection
view (R1.2). To compare high-level features extracted by CNN models,
we selected the last two convolutional layers, respectively. Both the
projected polylines of the parameters become relatively stable at the
90th round. We grouped the 547 inconsistent records identified at this
round into 80 clusters (R3.1). Three clusters with extra-low federated
accuracy and a relatively large size caught our attention. All of the
records in these clusters are misclassified as with no mask by the HFL
model. We then checked these records by clicking the highlighted
circles in the label exploration view. As shown in Figure 7(a1), the first
cluster with 7 pictures corresponds to a person who puts a banana on
the mouth to disguise a mask. These records are labeled incorrectly. In
the other two clusters, the masks with special patterns are neglected
by the HFL model (see Figure 7(a2-a3)). We found more masks with
special patterns after we set the cluster number as the recommendation
(i.e., 125). As shown in Figure 7(a4), a new cluster with 15 records is
identified. Similarly, all records are misclassified by the HFL model.

To investigate the reasons, we compare discriminative regions of the
HFL model with the stand-alone training model. Both Grad-CAMs
highlight the same region (see Figure 7(b)), which implies that the two
models consider the same area as the basis of discrimination. However,
the HFL model makes wrong judgments. We had a concern that the
performance of the HFL model was affected because the data distributed
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Fig. 5. Inconsistency clusters of inconsistent records identified from the
40th round. (a) The top four clusters with the recommended cluster
number. (b) Two clusters split from the 1st cluster in (a) after cluster
number reaches 50.

in the other client is lacking our patterns.
To investigate the banana issue and the pattern issue, we annotated

corresponding clusters and track them in the HFL process (R3.3). In the
200th round, the total of inconsistent records has decreased to 347. We
reviewed the annotated records. Most pictures of masks with patterns
are classified correctly by the HFL model (see Figure 8). It turned out
that the HFL model is capable of handling such statistical heterogeneity
issues. However, a record with a “banana mask” was classified as with
a mask. To optimize performance, we have to correct the labels of
“banana masks” and notify the other client of this accident. We further
compared model output by sample input (R2.2). The convex hulls of the
most inconsistency clusters have no overlap with local data records. To
judge whether corresponding data heterogeneity exerts positive impact
on our classification task, we need to collect corresponding records
from real world and verify the output with ground-truth labels.

7.3 Vehicle Recognition

In the third case, four clients seek accurate vehicle recognition by
federated cooperation. Each client collected an equal number of
pictures in three of four categories (i.e., plane, car, ship, and truck)
from CIFAR-10 dataset [14]. No picture is shared by two clients. The
analyzed client owns 5,400 pictures: 1,800 pictures of plane, car, and
truck, respectively. 900 pictures are included in the test set.

According to the pattern of parameter fluctuation (R1.1), we split
the carried-out training process into three stages at the 25th round
and the 110th round. As shown in the parameter projection view
(Figure 9(a)), parameters of the HFL model change significantly in
the first 25 rounds, which indicates a fast learning process (R1.2).
Then, the accuracy has approached its maximum around the 25th round
(see Figure 9(b)). At the second stage, divergence could be observed
between local updates and the HFL model from the directions of the
arrows. At the end of the second stage (i.e., the 110th round), the
loss has reached its minimum (see Figure 9(b)). In the last stage, the
polyline in the parameter projection view fluctuates dramatically within
a small range.

We checked the end of each stage to investigate the evolution of
heterogeneity issues. Among 955 inconsistent records at the 25th
round, 90% of them are classified incorrectly by the HFL model. The
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statistical results in the label exploration view demonstrate that the
HFL model misclassified 425 records as ships (R3.2). Besides, the
HFL model encountered difficulties in distinguishing between cars and
trucks, which leads to other 225 incorrect records.

In the 200th round, 162 records were still classified as a ship (R3.3).
To focus on the label distribution, we hid the scatters. As shown in
Figure 10(a), most planes were projected inside or beside the convex
hull of inconsistent records, because planes have similar features to
ships (e.g., with blue background). Meanwhile, records with labels of
car or truck are distributed far from the convex hulls (see the green
grids in Figures 10(b) and (c)). The HFL model is inclined to classify a
plane as a ship.

Nevertheless, the car-and-track issue was drastically alleviated since
the 110th round. To inspect the confusion among ground-truth labels at
the final round, we checked the first three rows of the label exploration
matrix, which corresponds to the records classified as plane, car, and
truck by the HFL model. There are 36 inconsistent records in the
non-diagonal cells (misclassified by the HFL model) and 157 ones in
the diagonal cells (misclassified by the stand-alone training model).
Therefore, the HFL model is superior to the stand-alone training model
in the task of distinguishing local labels. In summary, we could benefit
from the HFL cooperation. To fix the plane-ship issue, we should invite
more partners to train the HFL model.

8 DISCUSSION

In this section, we discuss 1) expert reviews on HetVis, and 2) the
result of a comparative study for the proposed context-aware clustering
approach.

8.1 Expert Reviews
We interviewed three researchers (E3, E4, and E5) who had worked on
FL for two years. For each interview, we first introduced our approach
and then presented a demo of our system. After that, experts were
allowed to freely explore data heterogeneity of the above three cases in
our system. At the end of the interview, we collected their feedback on
the following four aspects. Each interview lasted about an hour.

Effectiveness. Due to data isolation, existing approaches to
heterogeneity analysis are mainly by observing local data and
identifying skewed distributions. All experts agreed that our
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system could help them better to formulate reasonable hypotheses
of heterogeneity than their original approaches. E3 said that the
heterogeneity issues could be solved by adjusting records in the local
client (e.g., expanding records) and findings in our system indicated
which kind of adjustments could improve the performance of the HFL.
E5 also noted that cluster analysis could efficiently locate heterogeneous
issues and guide batch corrections.

Usage experience. The usability of our system received positive
feedback from the experts. Both E3 and E4 appreciated the annotation
functionality and commented that annotation allowed them to track
certain sets of records. For visual designs, E3 and E5 were impressed
by the intuitive representations in the parameter projection view. E3
commented that “It can clearly reflect the conflicts between local
updates and the HFL parameters.” Particularly, a disagreement occurred
with the dimension exploration. E4 was inclined to navigate by ccPCA
because it could summarize data characteristics. However, E5 preferred
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the model-driven Grad-CAM to understand model behaviors.
Findings. When the accuracy of either model was satisfying, E4

found that the inconsistent records could depict the boundary of two
classes in the ccPCA projection. Based on this observation, E4 drew
the conclusion that the HFL model and the stand-alone training model
would fail to reach an agreement especially when the target records were
hard to classify, i.e., the records were distributed along the classification
boundary. E4 also found that ccPCA separated inconsistent records
from the consistent context, which in the meantime split different
classes (see Figures 1(b1) and 8). This indicated that the projection
results could also help users to assess model performance.

Advice. Despite the effectiveness and usefulness of our system, the
experts offered two suggestions. First, we should take into account the
architecture of the neural network when analyzing parameter exchanges
(E3, E5). For example, users might focus on parameters in certain

layers in the neural network when evaluating a deep learning model.
Therefore, we improved the parameter projection view by grouping
parameters based on layers. Users are allowed to select a layer and
check parameters in the corresponding layer. Second, considering that
dozens of labels might be yielded from the HFL model, E3 pointed out
that the label exploration view needed an overview to facilitate object
location. We plan to add it in the future version of our system.

8.2 Comparative Study

As mentioned in Section 5.2, we proposed a context-aware clustering
approach to extract heterogeneity issues. To prove the effectiveness
of our clustering approach, we compared our approach with the
distance-based clustering approach based on the local data in the first
case to seek instance-level verification.

Two clustering approaches were applied to cluster the 208
inconsistent records identified in the 200th round. The maximum
difference [31] was employed to recommend appropriate cluster
numbers for both clustering approaches. Our clustering approach
generated 59 clusters, among which the largest cluster consisted of
45 records of typographic digit-1s while the distance-based approach
yielded 118 clusters, none of which contained more than 6 records.
Although the records in the same cluster were similar to each other,
similar records (e.g., typographic digit-1s) were split into different
clusters.

To eliminate the effects of the recommendation algorithm, we set the
cluster number to 100 for both approaches in the second experiment.
The distance-based approach showed little change—the largest cluster
only consisted of 7 records. While our proposed approach still clustered
40 records of typographic digit-1s, which is much better than the other.
The clustering results can be found in the supplemental material files.

8.3 Limitations and Future Work

We discuss two limitations of HetVis and summarize our future work.
Scalability. The PCA-based algorithms employed in HetVis can

hardly support the analysis of data with thousands of dimensions.
We need to integrate high-performance dimensionality reduction
approaches and dimension recommendation approaches. As mentioned
by E3, the design of the label exploration view also has difficulty in
adapting to a large number of labels. We plan to optimize this view
by providing an overview and recommending significant labels in the
future.

Extensibility. HetVis supports vector data, such as image data and
tabular data. But text data and other data modalities are not supported by
the current system due to different requirements of federated learning
settings. Extending to new data modalities and machine learning tasks
is an interesting future work.

9 CONCLUSION

In this paper, we propose HetVis, a visual analysis approach to assist
identification and examination of data heterogeneity under the privacy
limit of HFL. Instead of directly comparing local data and global data,
we compare the output of the HFL model with a stand-alone training
model. A contrastive clustering analysis approach is leveraged to
extract heterogeneity issues from the inconsistent records identified
from the output comparison. In the future, we would like to extend our
system to support online tuning of HFL model. The code of our system
is available at the following link: https://github.com/EmmaammE/
HetVis.
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